37 resultados para SICKLE CELL DISEASE

em Helda - Digital Repository of University of Helsinki


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neural stem cell characteristics affected by oncogenic pathways and in a human motoneuron disease Stem cells provide the self-renewing cell pool for developing or regenerating organs. The mechanisms underlying the decisions of a stem or progenitor cell to either self-renew and maintain multipotentiality or alternatively to differentiate are incompletely understood. In this thesis work, I have approached this question by investigating the role of the proto-oncogene Myc in the regulatory functions of neural progenitor cell (NPC) self-renewal, proliferation and differentiation. By using a retroviral transduction technique to create overexpression models in embryonic NPCs cultured as neurospheres, I show that activated levels of Myc increase NPC self-renewal. Furthermore, several mechanisms that regulate the activity of Myc were identified. Myc induced self-renewal is signalled through binding to the transcription factor Miz-1 as shown by the inhibited capacity of a Myc mutant (MycV394D), deficient in binding to Miz-1, to increase self-renewal in NPCs. Furthermore, overexpression of the newly identified proto-oncogene CIP2A recapitulates the effects of Myc overexpression in NPCs. Also the expression levels and in vivo expression patterns of Myc and CIP2A were linked together. CIP2A stabilizes Myc protein levels in several cancer types by inhibiting its degradation and our results suggest the same function for CIP2A in NPCs. Our results also support the conception of self-renewal and proliferation being two separately regulated cellular functions. Finally, I suggest that Myc regulates NPC self-renewal by influencing the way stem and progenitor cells react to the environmental cues that normally dictate the cellular identity of tissues containing self-renewing cells. Neurosphere cultures were also utilised in order to characterise functional defects in a human disease. Neural stem cell cultures obtained post-mortem from foetuses of lethal congenital contracture syndrome (LCCS) were used to reveal possible cell autonomous differentiation defects of patient NPCs. However, LCCS derived NPCs were able to differentiate normally in vitro although several transcriptional differences were identified by using microarray analysis. Proliferation rate of the patient NPCs was also increased as compared to NPCs of age-matched control foetuses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis clarifies important molecular pathways that are activated during the cell death observed in Huntington’s disease. Huntington’s disease is one of the most common inherited neurodegenerative diseases, which is primarily inherited in an autosomal dominant manner. HD is caused by an expansion of CAG repeats in the first exon of the IT15 gene. IT15 encodes the production of a Huntington’s disease protein huntingtin. Mutation of the IT15 gene results in a long stretch of polyQ residues close to the amino-terminal region of huntingtin. Huntington’s disease is a fatal autosomal neurodegenerative disorder. Despite the current knowledge of HD, the precise mechanism behind the selective neuronal death, and how the disease propagates, still remains an enigma. The studies mainly focused on the control of endoplasmic reticulum (ER) stress triggered by the mutant huntingtin proteins. The ER is a delicate organelle having essential roles in protein folding and calcium regulation. Even the slightest perturbations on ER homeostasis are effective enough to trigger ER stress and its adaptation pathways, called unfolded protein response (UPR). UPR is essential for cellular homeostasis and it adapts ER to the changing environment and decreases ER stress. If adaptation processes fail and stress is excessive and prolonged; irreversible cell death pathways are engaged. The results showed that inhibition of ER stress with chemical agents are able to decrease cell death and formation of toxic cell aggregates caused by mutant huntingtin proteins. The study concentrated also to the NF-κB (nuclear factor-kappaB) pathway, which is activated during ER stress. NF-κB pathway is capable to regulate the levels of important cellular antioxidants. Cellular antioxidants provide a first line of defence against excess reactive oxygen species. Excess accumulation of reactive oxygen species and subsequent activation of oxidative stress damages motley of vital cellular processes and induce cell degeneration. Data showed that mutant huntingtin proteins downregulate the expression levels of NF-κB and vital antioxidants, which was followed by increased oxidative stress and cell death. Treatment with antioxidants and inhibition of oxidative stress were able to counteract these adverse effects. In addition, thesis connects ER stress caused by mutant huntingtin to the cytoprotective autophagy. Autophagy sustains cellular balance by degrading potentially toxic cell proteins and components observed in Huntington’s disease. The results revealed that cytoprotective autophagy is active at the early points (24h) of ER stress after expression of mutant huntingtin proteins. GADD34 (growth arrest and DNA damage-inducible gene 34), which is previously connected to the regulation of translation during cell stress, was shown to control the stimulation of autophagy. However, GADD34 and autophagy were downregulated at later time points (48h) during mutant huntingtin proteins induced ER stress, and subsequently cell survival decreased. Overexpression GADD34 enhanced autophagy and decreased cell death, indicating that GADD34 plays a critical role in cell protection. The thesis reveales new interesting data about the neuronal cell death pathways seen in Huntington’s disease, and how cell degeneration is partly counteracted by various therapeutic agents. Expression of mutant huntingtin proteins is shown to alter signaling events that control ER stress, oxidative stress and autophagy. Despite that Huntington’s disease is mainly an untreatable disorder; these findings offer potential targets and neuroprotective strategies in designing novel therapies for Huntington’s disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly. Its etiology is unknown and no disease-modifying drugs are available. Thus, more information concerning its pathogenesis is needed. Among other genes, mutated PTEN-induced kinase 1 (PINK1) has been linked to early-onset and sporadic PD, but its mode of action is poorly understood. Most animal models of PD are based on the use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is metabolized to MPP+ by monoamine oxidase B (MAO B) and causes cell death of dopaminergic neurons in the substantia nigra in mammals. Zebrafish has been a widely used model organism in developmental biology, but is now emerging as a model for human diseases due to its ideal combination of properties. Zebrafish are inexpensive and easy to maintain, develop rapidly, breed in large quantities producing transparent embryos, and are readily manipulated by various methods, particularly genetic ones. In addition, zebrafish are vertebrate animals and results derived from zebrafish may be more applicable to mammals than results from invertebrate genetic models such as Drosophila melanogaster and Caenorhabditis elegans. However, the similarity cannot be taken for granted. The aim of this study was to establish and test a PD model using larval zebrafish. The developing monoaminergic neuronal systems of larval zebrafish were investigated. We identified and classified 17 catecholaminergic and 9 serotonergic neuron populations in the zebrafish brain. A 3-dimensional atlas was created to facilitate future research. Only one gene encoding MAO was found in the zebrafish genome. Zebrafish MAO showed MAO A-type substrate specificity, but non-A-non-B inhibitor specificity. Distribution of MAO in larval and adult zebrafish brains was both diffuse and distinctly cellular. Inhibition of MAO during larval development led to markedly elevated 5-hydroxytryptamine (serotonin, 5-HT) levels, which decreased the locomotion of the fish. MPTP exposure caused a transient loss of cells in specific aminergic cell populations and decreased locomotion. MPTP-induced changes could be rescued by the MAO B inhibitor deprenyl, suggesting a role for MAO in MPTP toxicity. MPP+ affected only one catecholaminergic cell population; thus, the action of MPP+ was more selective than that of MPTP. The zebrafish PINK1 gene was cloned in zebrafish, and morpholino oligonucleotides were used to suppress its expression in larval zebrafish. The functional domains and expression pattern of zebrafish PINK1 resembled those of other vertebrates, suggesting that zebrafish is a feasible model for studying PINK1. Translation inhibition resulted in cell loss of the same catecholaminergic cell populations as MPTP and MPP+. Inactivation of PINK1 sensitized larval zebrafish to subefficacious doses of MPTP, causing a decrease in locomotion and cell loss in one dopaminergic cell population. Zebrafish appears to be a feasible model for studying PD, since its aminergic systems, mode of action of MPTP, and functions of PINK1 resemble those of mammalians. However, the functions of zebrafish MAO differ from the two forms of MAO found in mammals. Future studies using zebrafish PD models should utilize the advantages specific to zebrafish, such as the ability to execute large-scale genetic or drug screens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microarrays have a wide range of applications in the biomedical field. From the beginning, arrays have mostly been utilized in cancer research, including classification of tumors into different subgroups and identification of clinical associations. In the microarray format, a collection of small features, such as different oligonucleotides, is attached to a solid support. The advantage of microarray technology is the ability to simultaneously measure changes in the levels of multiple biomolecules. Because many diseases, including cancer, are complex, involving an interplay between various genes and environmental factors, the detection of only a single marker molecule is usually insufficient for determining disease status. Thus, a technique that simultaneously collects information on multiple molecules allows better insights into a complex disease. Since microarrays can be custom-manufactured or obtained from a number of commercial providers, understanding data quality and comparability between different platforms is important to enable the use of the technology to areas beyond basic research. When standardized, integrated array data could ultimately help to offer a complete profile of the disease, illuminating mechanisms and genes behind disorders as well as facilitating disease diagnostics. In the first part of this work, we aimed to elucidate the comparability of gene expression measurements from different oligonucleotide and cDNA microarray platforms. We compared three different gene expression microarrays; one was a commercial oligonucleotide microarray and the others commercial and custom-made cDNA microarrays. The filtered gene expression data from the commercial platforms correlated better across experiments (r=0.78-0.86) than the expression data between the custom-made and either of the two commercial platforms (r=0.62-0.76). Although the results from different platforms correlated reasonably well, combining and comparing the measurements were not straightforward. The clone errors on the custom-made array and annotation and technical differences between the platforms introduced variability in the data. In conclusion, the different gene expression microarray platforms provided results sufficiently concordant for the research setting, but the variability represents a challenge for developing diagnostic applications for the microarrays. In the second part of the work, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 38 laryngeal and oral tongue squamous cell carcinoma cell lines and primary tumors. Our aim was to pinpoint genes for which expression was impacted by changes in copy number. The data revealed that especially amplifications had a clear impact on gene expression. Across the genome, 14-32% of genes in the highly amplified regions (copy number ratio >2.5) had associated overexpression. The impact of decreased copy number on gene underexpression was less clear. Using statistical analysis across the samples, we systematically identified hundreds of genes for which an increased copy number was associated with increased expression. For example, our data implied that FADD and PPFIA1 were frequently overexpressed at the 11q13 amplicon in HNSCC. The 11q13 amplicon, including known oncogenes such as CCND1 and CTTN, is well-characterized in different type of cancers, but the roles of FADD and PPFIA1 remain obscure. Taken together, the integrated microarray analysis revealed a number of known as well as novel target genes in altered regions in HNSCC. The identified genes provide a basis for functional validation and may eventually lead to the identification of novel candidates for targeted therapy in HNSCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suusyöpä Teheranissa, Iranissa 1993-2003 Tämän väitöskirjan tavoitteena oli kuvata suusyövän yleisyyttä ja siihen vaikuttavia tekijöitä Teheranissa, Iranissa tutkimalla suusyöpäpotilaita, suusyöpäkasvainten ominaisuuksia, potilaille tehtyjä diagnooseja ja niiden viivästymistä sekä heidän selviytymistä sairaudestaan. Suusyöpäkasvainten tietoja kerättiin 1042 suusyöpäpotilaalta. Nämä tiedot kerättiin 30 suurimman Teheranilaissairaalan potilaskortistoista vuosien 1993-2003 ajalta. Eloonjäämisanalyysiä varten tiedot kerättiin vuosien 1996-2003 arkistoista 470 suusyöpä- ja 82 huulisyöpäpotilaan osalta ja heitä seurattiin vuoden 2005 loppuun. Potilaan kokemien ensioireiden ja lopullisen syöpädiagnoosin välistä viivettä varten kerättiin tiedot Teheranilaisista sairaaloista 100 peräkkäisen suusyöpäpotilaan tiedoista vuosien 2004-2006 välillä. Ns diagnostinen viive jaettiin kahteen osaan: 1) ensioireiden ja ensimmäisen sitä seuranneen lääkärikäynnin väli ja 2) ensimmäisen lääkärikäynnin ja lopullisen diagnoosin välinen ero. Useimmat suusyövät olivat pitkälle edenneitä diagnoosin tekemisen hetkellä, kasvain oli siis yli 4 senttimetriä halkaisijaltaan ja/tai kaulan alueen imusolmukkeissa oli jo etäpesäkkeitä. Eloonjäämistodennäköisyys viiden vuoden aikavälillä oli suusyöpäpotilaille 30% ja huulisyöpäpotilaille 62%, mitkä olivat merkittävästi alempia kuin yleisesti länsimaissa vastaavat luvut. Tämä tutkimus osoitti, että keskimääräinen diagnostinen viive oli korkea (7,2 kk, SD 7,5), erityisesti kun niitä verrataan kehittyneimpien terveydenhuoltojärjestelmien vastaaviin tietoihin. Yleensä potilaasta aiheutuva viive oli huomattavan suuri ensioireiden ja lopullisen diagnoosin välisestä ajasta. Tässä tutkimuksessa tehtyjen havaintojen pohjalta on perusteltua esittää kehitettäväksi ennaltaehkäisevä tiedotusohjelma, jossa kansalaiset voisivat saada enemmän tietoa suusyövästä, sen ensioireista jotta he hakeutuisivat aikaisemmin hoitoon. Lisäksi terveydenhoitohenkilöstöä, erityisesti hammaslääkärejä ja suuhygienistejä tulisi kouluttaa varhaisen diagnoosin tekemiseksi, jotta Iranissa tehtävien suusyöpähoitojen lopputulokset paranisivat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than 40% of all deaths in Finland are caused by atherosclerosis. The complications of atherosclerosis are due to either detachment of the luminal endothelium (erosion) or rupture of the fibrous cap of an atherosclerotic plaque (rupture). As a result, a thrombus is formed at the site of the intimal lesion. Indeed, erosions cause roughly 40% of sudden atherothrombotic deaths and 25% of all atherothrombotic deaths. Erosions are overrepresented in young subjects, diabetics, smokers and women. This dissertation focuses on endothelial erosion. Endothelial erosions were studied in the context of arterial grafting and vascular inflammation. Special attention was given to the role of intimal mast cells and the methodological viewpoints of reliable identification of endothelial erosions. Mast cells are inflammatory cells mostly known for their ability to cause allergic symptoms. In addition to occurring in skin and mucosal surfaces, mast cells are abundant in arterial intima and adventitia. In this study, mast cells were found to associate with endothelial erosions in non-lesional and atherosclerotic human coronary arteries. Thus, mast cells may participate in atherogenesis at the initial phases of the disease process already. We also showed that the mast cell proteases tryptase, chymase, and cathepsin G are all capable of cleaving molecules essential for endothelial cell-to-cell and cell-to-extracellular matrix interactions, such as VE-cadherin and fibronectin. Symptom-causing carotid plaques were found to contain more inflammatory cells, especially mast cells, than non-symptom-causing plaques. Furthermore, the atherogenic serum lipid profile and the degree of carotid stenosis turned out to correlate with the density of carotid plaque mast cells. Apoptotic and proliferating cells were more abundant in non-symptom causing plaques (active renewal of endothelial cells), but erosions were larger in symptom-causing plaques (capacity of endothelial regeneration exceeded). The process of identifying endothelial erosions with immunostainings has been ambiguous, since both endothelial cells and platelets express largely the same antigens. This may have caused inaccurate interpretations of the presence of endothelial erosion. In the last substudy of this thesis we developed a double immunostaining method for simultaneous identification of endothelial cells and platelets. This method enables more reliable identification of endothelial erosions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurofibromatosis 2 (NF2) is a dominantly inherited disorder, which predisposes to multiple tumours of the nervous system, typically schwannomas and meningiomas. Biallelic inactivation of the NF2 gene occurs both in sporadic and NF2-related schwannomas and in most meningiomas. The NF2 gene product merlin (or schwannomin) is structurally related to the ERM proteins, ezrin, radixin and moesin, which act as molecular linkers between the actin cytoskeleton and the plasma membrane. Merlin is a tumor suppressor that participates in cell cycle regulation. Merlin s phosphorylation status appears to be associated with its tumour suppressor activity, i.e. non-phosphorylated merlin functions as a tumour suppressor, whereas protein phosphorylation results in loss of functional activity. This thesis study was initiated to investigate merlin s role as a tumor suppressor and growth inhibitor. These studies show, that like many other tumor suppressors, also merlin is targeted to the nucleus at some stages of the cell cycle. Merlin s nuclear localization is regulated by cell cycle phase, contact inhibition and adhesion. In addition, a potential nuclear binding partner for merlin was identified, Human Enhancer of Invasion 10 (HEI10), a cyclin B interacting protein. Many tumor suppressors interact with microtubules and this thesis work shows that also merlin colocalizes with microtubules in mitotic structures. Merlin binds microtubules directly, and increases their polymerization in vitro and in vivo. In addition, primary mouse Schwann cells lacking merlin displays disturbed microtubule cytoskeleton. Fourth part of this thesis work began from the notion that PKA phosphorylates an unidentified site from the merlin N-terminus. Our studies show that serine 10 is a target for PKA and modulation of this residue regulates cytoskeletal organization, lamellipodia formation and cell migration. In summary, this thesis work shows that merlin s role is much more versatile than previously thought. It has a yet unidentified role in the nucleus and it participates in the regulation of both microtubules and the actin cytoskeleton. These studies have led to a better understanding of this enigmatic tumor suppressor, which eventually will aid in the design of specific drugs for the NF2 disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rab8 and its interacting proteins as regulators of cell polarization During the development of a multi-cellular organism, progenitor cells have to divide and migrate appropriately as well as organize their differentiation with one another, in order to produce a viable embryo. To divide, differentiate and migrate cells have to undergo polarization, a process where internal and external components such as actin, microtubules and adhesion receptors are reorganized to produce a cell that is asymmetric, with functionally different surfaces. Also in the adult organism there is a continuous need for these processes, as cells need to migrate in response to tissue damage and to fight infection. Improper regulation of cell proliferation and migration can conversely lead to disease such as cancer. GTP-binding proteins function as molecular switches by cycling between a GTP-bound (active) conformation and a GDP-bound (inactive) conformation. The Ras super-family of small GTPases are found in all eukaryotic cells. They can be functionally divided into five subfamilies. The Ras family members mainly regulate gene expression, controlling cell proliferation and differentiation. Ras was in fact the first human oncogene to be characterized, and as much as 30% of all human tumors may be directly or indirectly caused by mutations of Ras molecules The Rho family members mainly regulate cytoskeletal reorganization. Arf proteins are known to regulate vesicle budding and Rab proteins regulate vesicular transport. Ran regulates nuclear transport as well as microtubule organization during mitosis. The focus of the thesis of Katarina Hattula, is on Rab8, a small GTPase of the Rab family. Activated Rab8 has previously been shown to induce the formation of new surface extensions, reorganizing both actin and microtubules, and to have a role in directed membrane transport to cell surfaces. However, the exact membrane route it regulates has remained elusive. In the thesis three novel interactors of Rab8 are presented. Rabin8 is a Rab8-specific GEF that localizes to vesicles where it presumably recruits and activates its target Rab8. Its expression in cells leads to remodelling of actin and the formation of polarized cell surface domains. Optineurin, known to be associated with a leading cause of blindness in humans (open-angle glaucoma), is shown to interact specifically with GTP-bound Rab8. Rab8 binds to an amino-terminal region and interestingly, the Huntingtin protein binds a carboxy-terminal region of optineurin. (Aberrant Huntingtin protein is known to be the cause Huntington s disease in humans.) Co-expression of Huntingtin and optineurin enhanced the recruitment of Huntingtin to Rab8-positive vesicular structures. Furthermore, optineurin promoted cell polarization in a similar way to Rab8. A third novel interactor of Rab8 presented in this thesis is JFC1, a member of the synaptogamin-like protein (Slp) family. JFC1 interacts with Rab8 specifically in its GTP-bound form, co-localizes with endogenous Rab8 on tubular and vesicular structures, and is probably involved in controlling Rab8 membrane dynamics. Rab8 is in this thesis work clearly shown to have a strong effect on cell shape. Blocking Rab8 activity by expression of Rab8 RNAi, or by expressing the dominant negative Rab8 (T22N) mutant leads to loss of cell polarity. Conversely, cells expressing the constitutively active Rab8 (Q67L) mutant exhibit a strongly polarized phenotype. Experiments in live cells show that Rab8 is associated with macropinosomes generated at ruffling areas of the membrane. These macropinosomes fuse with or transform into tubules that move toward the cell centre, from where they are recycled back to the leading edge to participate in protrusion formation. The biogenesis of these tubules is shown to be dependent on both actin and microtubule dynamics. The Rab8-specific membrane route studied contained several markers known to be internalized and recycled (1 integrin, transferrin, transferrin receptor, cholera toxin B subunit (CTxB), and major histocompatibility complex class I protein (MHCI)). Co-expression studies revealed that Rab8 localization overlaps with that of Rab11 and Arf6. Rab8 is furthermore clearly functionally linked to Arf6. The data presented in this thesis strongly suggests a role for Rab8 as a regulator for a recycling compartment, which is involved in providing structural and regulatory components to the leading edge to participate in protrusion formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infection by Epstein-Barr virus (EBV) occurs in approximately 95% of the world s population. EBV was the first human virus implicated in oncogenesis. Characteristic for EBV primary infection are detectable IgM and IgG antibodies against viral capsid antigen (VCA). During convalescence the VCA IgM disappears while the VCA IgG persists for life. Reactivations of EBV occur both among immunocompromised and immunocompetent individuals. In serological diagnosis, measurement of avidity of VCA IgG separates primary from secondary infections. However, in serodiagnosis of mononucleosis it is quite common to encounter, paradoxically, VCA IgM together with high-avidity VCA IgG, indicating past immunity. We determined the etiology of this phenomenon and found that, among patients with cytomegalovirus (CMV) primary infection a large proportion (23%) showed antibody profiles of EBV reactivation. In contrast, EBV primary infection did not appear to induce immunoreactivation of CMV. EBV-associated post-transplant lymphoproliferative disease (PTLD) is a life threatening complication of allogeneic stem cell or solid organ transplantation. PTLD may present with a diverse spectrum of clinical symptoms and signs. Due to rapidity of PTLD progression especially after stem cell transplantation, the diagnosis must be obtained quickly. Pending timely detection, the evolution of the fatal disease may be halted by reduction of immunosuppression. A promising new PTLD treatment (also in Finland) is based on anti-CD-20 monoclonal antibodies. Diagnosis of PTLD has been demanding because of immunosuppression, blood transfusions and the latent nature of the virus. We set up in 1999 to our knowledge first in Finland for any microbial pathogen a real-time quantitative PCR (qPCR) for detection of EBV DNA in blood serum/plasma. In addition, we set up an in situ hybridisation assay for EBV RNA in tissue sections. In collaboration with a group of haematologists at Helsinki University Central Hospital we retrospectively determined the incidence of PTLD among 257 allogenic stem cell transplantations (SCT) performed during 1994-1999. Post-mortem analysis revealed 18 cases of PTLD. From a subset of PTLD cases (12/18) and a series of corresponding controls (36), consecutive samples of serum were studied by the new EBV-qPCR. All the PTLD patients were positive for EBV-DNA with progressively rising copy numbers. In most PTLD patients EBV DNA became detectable within 70 days of SCT. Of note, the appearance of EBV DNA preceded the PTLD symptoms (fever, lymphadenopathy, atypical lymphocytes). Among the SCT controls, EBV DNA occurred only sporadically, and the EBV-DNA levels remained relatively low. We concluded that EBV qPCR is a highly sensitive (100%) and specific (96%) new diagnostic approach. We also looked for and found risk factors for the development of PTLD. Together with a liver transplantation group at the Transplantation and Liver Surgery Clinic we wanted to clarify how often and how severely do EBV infections occur after liver transplantation. We studied by the EBV qPCR 1284 plasma samples obtained from 105 adult liver transplant recipients. EBV DNA was detected in 14 patients (13%) during the first 12 months. The peak viral loads of 13 asymptomatic patients were relatively low (<6600/ml), and EBV DNA subsided quickly from circulation. Fatal PTLD was diagnosed in one patient. Finally, we wanted to determine the number and clinical significance of EBV infections of various types occurring among a large, retrospective, nonselected cohort of allogenic SCT recipients. We analysed by EBV qPCR 5479 serum samples of 406 SCT recipients obtained during 1988-1999. EBV DNA was seen in 57 (14%) patients, of whom 22 (5%) showed progressively rising and ultimately high levels of EBV DNA (median 54 million /ml). Among the SCT survivors, EBV DNA was transiently detectable in 19 (5%) asymptomatic patients. Thereby, low-level EBV-DNA positivity in serum occurs relatively often after SCT and may subside without specific treatment. However, high molecular copy numbers (>50 000) are diagnostic for life-threatening EBV infection. We furthermore developed a mathematical algorithm for the prediction of development of life-threatening EBV infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a hereditary tumour predisposition syndrome. Its phenotype includes benign cutaneous and uterine leiomyomas (CLM, ULM) with high penetrance and rarer renal cell cancer (RCC), most commonly of papillary type 2 subtype. Over 130 HLRCC families have been identified world-wide but the RCC phenotype seems to concentrate in families from Finland and North America for unknown reasons. HLRCC is caused by heterozygous germline mutations in the fumarate hydratase (FH) gene. FH encodes the enzyme fumarase from mitochondrial citric acid cycle. Fumarase enzyme activity or type or site of the FH mutation are unassociated with disease phenotype. The strongest evidence for tumourigenesis mechanism in HLRCC supports a hypoxia inducible factor driven process called pseudohypoxia resulting from accumulation of the fumarase substrate fumarate. In this study, to assess the importance of gene- or exon-level deletions or amplifications of FH in patients with HLRCC-associated phenotypes, multiplex ligation-dependent probe amplification (MLPA) method was used. One novel FH mutation, deletion of exon 1, was found in a Swedish male patient with an evident HLRCC phenotype with CLM, RCC, and a family history of ULM and RCC. Six other patients with CLM and 12 patients with only RCC or uterine leiomyosarcoma (ULMS) remained FH mutation-negative. These results suggest that copy number aberrations of FH or its exons are an infrequent cause of HLRCC and that only co-occurrence of benign tumour types justifies FH-mutation screening in RCC or ULMS patients. Determination of the genomic profile of 11 HLRCC-associated RCCs from Finnish patients was performed by array comparative genomic hybridization. The most common copy number aberrations were gains of 2, 7, and 17 and losses of 13q12.3-q21.1, 14, 18, and X. When compared to aberrations of sporadic papillary RCCs, HLRCC-associated RCCs harboured a distinct DNA copy number profile and lacked many of the changes characterizing the sporadic RCCs. The findings suggest a divergent molecular pathway for tumourigenesis of papillary RCCs in HLRCC. In order to find a genetic modifier of RCC risk in HLRCC, genome-wide linkage and identical by descent (IBD) analysis studies were performed in Finnish HLRCC families with microsatellite marker mapping and SNP-array platforms. The linkage analysis identified only one locus of interest, the FH gene locus in 1q43, but no mutations were found in the genes of the region. IBD analysis yielded no convincing haplotypes shared by RCC patients. Although these results do not exclude the existence of a genetic modifier for RCC risk in HLRCC, they emphasize the role of FH mutations in the malignant tumourigenesis of HLRCC. To study the benign tumours in HLRCC, genome-wide DNA copy number and gene expression profiles of sporadic and HLRCC ULMs were defined with modern SNP- and gene-expression array platforms. The gene expression array suggests novel genes involved in FH-deficient ULM tumourigenesis and novel genes with putative roles in propagation of sporadic ULM. Both the gene expression and copy number profiles of HLRCC ULMs differed from those of sporadic ULMs indicating distinct molecular basis of the FH-deficient HLRCC tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegenerative disorders are chronic, progressive, and often fatal disorders of the nervous system caused by dysfunction, and ultimately, death of neuronal cells. The underlying mechanisms of neurodegeneration are poorly understood, and monogenic disorders can be utilised as disease models to elucidate the pathogenesis. Juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease) is a recessively inherited lysosomal storage disorder with progressive neurodegeneration and accumulation of autofluorescent storage material in most tissues. It is caused by mutations in the CLN3 gene; however, the exact function of the corresponding CLN3 protein, as well as the molecular mechanisms of JNCL pathogenesis have remained elusive. JNCL disease exclusively affects the central nervous system leaving other organs unaffected, and therefore it is of a particular importance to conduct studies in brain tissue and neuronal cells. The aim of this thesis project was to elucidate the molecular and cell biological mechanisms underlying JNCL. This was the first study to describe the endogenous Cln3 protein, and it was shown that Cln3 localised to neuronal cells in the mouse brain. At a subcellular level, endogenous Cln3 was localised to the presynaptic terminals and to the synaptosome compartment, but not to the synaptic vesicles. Studies with the CLN3-deficient cells demonstrated an impaired endocytic membrane trafficking, and established an interconnection between CLN3, microtubulus-binding Hook1 and Rab proteins. This novel data was not only important in characterising the roles of CLN3 in cells, but also provided significant information delineating the versatile role of the Rab proteins. To identify affected cellular pathways in JNCL, global gene expression profiling of the knock-out mouse Cln3-/- neurons was performed and systematically analysed; this revealed a slight dysfunction of the mitochondria, cytoskeletal abnormality in the microtubule plus-end, and an impaired recovery from depolarizing stimulus when specific N-type Ca2+ channels were inhibited, thus leading to a prolonged time of higher intracellular calcium. All these defective pathways are interrelated, and may together be sufficient to initiate the neurodegenerative process. Results of this thesis also suggest that in neuronal cells, CLN3 most likely functions at endocytic vesicles at the presynaptic terminal, potentially involved in the regulation of the calcium-mediated synaptic transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vascular intimal hyperplasia is a major complication following angioplasty. The hallmark feature of this disorder is accumulation of dedifferentiated smooth muscle cells (SMCs) to the luminal side of the injured artery, cellular proliferation, migration, and synthesis of extracellular matrix. This finally results in intimal hyperplasia, which is currently considered an untreatable condition. According to current knowledge, a major part of neointimal cells derive from circulating precursor cells. This has outdated the traditional in vitro cell culture methods of studying neointimal cell migration and proliferation using cultured medial SMCs. Somatostatin and some of its analogs with different selectivity for the five somatostatin receptors (sst1 through sst5) have been shown to have vasculoprotective properties in animal studies. However, clinical trials using analogs selective for sst2/sst3/sst5 to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) have failed to show any major benefits. Sirolimus is a cell cycle inhibitor that has been suggested to act synergistically with the protein-tyrosine kinase inhibitor imatinib to inhibit intimal hyperplasia in rat already at well-tolerated submaximal oral doses. The mechanisms behind this synergy and its long-term efficacy are not known. The aim of this study was to set up an ex vivo vascular explant culture model to measure neointimal cell activity without excluding the participation of circulating progenitor cells. Furthermore, two novel potential vasculoprotective treatment strategies were evaluated in detail in rat models of intimal hyperplasia and in the ex vivo explant model: sst1/sst4-selective somatostatin receptor analogs and combination treatment with sirolimus and imatinib. This study shows how whole vessel explants can be used to study the kinetics of neointimal cells and their progenitors, and to evaluate the anti-migratory and anti-proliferative properties of potential vasculoprotective compounds. It also shows how the influx of neointimal progenitor cells occurs already during the first days after vascular injury, how the contribution of cell migration is more important in the injury response than cell proliferation, and how the adventitia actively contribute in vascular repair. The vasculoprotective effect of somatostatin is mediated preferentially through sst4, and through inhibition of cell migration rather than of proliferation, which may explain why sst2/sst3/sst5-selective analogs have failed in clinical trials. Furthermore, a brief early oral treatment with the combination of sirolimus and imatinib at submaximal doses results in long-term synergistic suppression of intimal hyperplasia. The synergy is a result of inhibition of post-operative thrombocytosis and leukocytosis, inhibition of neointimal cell migration to the injury-site, and maintenance of cell integrity by inhibition of apoptosis and SMC dedifferentiation. In conclusion, the influx of progenitor cells already during the first days after injury and the high neointimal cell migratory activity underlines the importance of early therapeutic intervention with anti-migratory compounds to prevent neointimal hyperplasia. Sst4-selective analogs and the combination therapy with sirolimus and imatinib represent potential targets for the development of such vasculoprotective therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cells of multicellular organisms have differentiated to carry out specific functions that are often accompanied by distinct cell morphology. The actin cytoskeleton is one of the key regulators of cell shape subsequently controlling multiple cellular events including cell migration, cell division, endo- and exocytosis. A large set of actin regulating proteins has evolved to achieve and tightly coordinate this wide range of functions. Some actin regulator proteins have so-called house keeping roles and are essential for all eukaryotic cells, but some have evolved to meet the requirements of more specialized cell-types found in higher organisms enabling complex functions of differentiated organs, such as liver, kidney and brain. Often processes mediated by the actin cytoskeleton, like formation of cellular protrusions during cell migration, are intimately linked to plasma membrane remodeling. Thus, a close cooperation between these two cellular compartments is necessary, yet not much is known about the underlying molecular mechanisms. This study focused on a vertebrate-specific protein called missing-in-metastasis (MIM), which was originally characterized as a metastasis suppressor of bladder cancer. We demonstrated that MIM regulates the dynamics of actin cytoskeleton via its WH2 domain, and is expressed in a cell-type specific manner. Interestingly, further examination showed that the IM-domain of MIM displays a novel membrane tubulation activity, which induces formation of filopodia in cells. Following studies demonstrated that this membrane deformation activity is crucial for cell protrusions driven by MIM. In mammals, there are five members of IM-domain protein family. Functions and expression patterns of these family members have remained poorly characterized. To understand the physiological functions of MIM, we generated MIM knockout mice. MIM-deficient mice display no apparent developmental defects, but instead suffer from progressive renal disease and increased susceptibility to tumors. This indicates that MIM plays a role in the maintenance of specific physiological functions associated with distinct cell morphologies. Taken together, these studies implicate MIM both in the regulation of the actin cytoskeleton and the plasma membrane. Our results thus suggest that members of MIM/IRSp53 protein family coordinate the actin cytoskeleton:plasma membrane interface to control cell and tissue morphogenesis in multicellular organisms.